
1 
 

Syncytial nerve net in a ctenophore adds insights on the evolution 1 

of nervous systems 2 

 3 

Pawel Burkhardt1, Jeffrey Colgren1*, Astrid Medhus1*, Leonid Digel1, Benjamin Naumann2, 4 

Joan J Soto-Àngel1, Eva-Lena Nordmann1, Maria Y Sachkova1, Maike Kittelmann3 5 
 6 
 7 

1Michael Sars Centre, University of Bergen, 5008 Bergen, Norway 8 
2Institut für Biowissenschaften, Allgemeine und Spezielle Zoologie, Universität Rostock, 18055 9 

Rostock, Germany 10 
3Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, OX3 0BP, UK 11 

 12 
*Correspondence: pawel.burkhardt@uib.no, maike.kittelmann@brookes.ac.uk 13 

*These authors contributed equally to this work 14 

Summary 15 

A fundamental breakthrough in neurobiology has been the formulation of the neuron doctrine 16 

by Santiago Ramón y Cajal, stating the nervous system is composed of discrete cells. Electron 17 

microscopy later confirmed the doctrine and allowed the identification of synaptic connections. 18 

Here we used volume electron microscopy and 3D reconstructions to characterize the nerve net 19 

of a ctenophore, marine invertebrate belonging to one of the earliest-branching animal lineages. 20 

We found that neurons in the subepithelial nerve net have a continuous plasma membrane 21 

forming a syncytium. Our findings suggest fundamental differences of nerve net architectures 22 

between ctenophores and cnidarians/bilaterians and offer an alternative perspective on neural 23 

network organization and neurotransmission. 24 
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Main Text 28 

The enigmatic nervous system of ctenophores  29 

For more than one century, the structure and evolutionary origin of the animal nervous system 30 

has been at the centre of much debate among biologists. Fundamental progress in our structural 31 

understanding was put forward by Santiago Ramón y Cajal, postulating that the nervous system 32 

is composed of discrete cells, so-called neurons, rather than forming a syncytial continuum, as 33 

proposed by Camillo Golgi(1). The discovery of synaptic connections between individual 34 

neurons by electron microscopy later confirmed Cajal’s theory. But is this always the case? 35 

There is accumulating evidence that ctenophores, gelatinous marine invertebrates moving 36 

through the water column by ciliary comb rows, are among the earliest branching extant 37 

lineages of the animal kingdom (Fig. 1A)(2–5). Most ctenophore life cycles include a predatory 38 

cydippid stage which, for some species is already able to reproduce a few days after hatching 39 

(Fig. 1B)(6). Ancestral state reconstruction suggests the cydippid body plan is a plesiomorphic 40 

character of ctenophores(7). 41 

The early split of ctenophores from other groups indicates that a nervous system, and maybe 42 

even neurons, could have evolved at least twice – once within the ctenophores and once within 43 

the lineage of the remaining animals(8). Initiated by genomic analyses(2, 3), molecular and 44 

physiological features of the ctenophore nervous system were subsequently interpreted to 45 

support this scenario(4, 5). In contrast to sponges and placozoans, ctenophores exhibit an 46 

elaborate nervous system consisting of a subepithelial nerve net (SNN), mesogleal neurons, a 47 

sensory aboral organ, tentacle nerves and diverse sensory cells in all parts of their body (Fig. 48 

1C and movie S1)(9–14). Deciphering the development, structure and function of the 49 

ctenophore nervous system is a key element to understand the origin and evolution of animal 50 

nervous systems. We have recently shown that a large repertoire of lineage-specific 51 

neuropeptides has evolved in the ctenophore Mnemiopsis leidyi(14). Furthermore, we identified 52 

a unique feature of SNN neurons: the multiple neurites extending from one soma are 53 

interconnected through anastomoses and thus form an extensive continuous network within a 54 

single nerve net neuron(14). This characteristic sets them apart from other animal neurons. 55 

Additionally, there was little evidence on how these nerve net neurons connect each other, to 56 

sensory neurons and to cells within the mesoglea due to the lack of synaptic markers suitable 57 

for fluorescent labeling or large-scale electron microscopic data spanning multiple neurons. 58 

Here we used high pressure freezing fixation techniques in combination with Serial Block Face 59 
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Scanning Electron Microscopy (SBFSEM) to establish the first ultrastructural 3D network of 60 

SNN neurons and other cell types in a ctenophore. 61 

The cydippid SNN is organized in a syncytium 62 

Recent 3D reconstruction of a nerve net neuron in a cydippid-phase Mnemiopsis leidyi has 63 

revealed a wide network of anastomosed neurites extending from only one soma(14). However, 64 

to understand the nature of connections between multiple nerve net neurons as well as other 65 

cell types we collected a larger continuous SBFSEM dataset of an early cydippid that includes 66 

5 nerve net neurons, 6 mesogleal neurons and 22 putative sensory cells. The neurites of all five 67 

SNN cells were connected through an anastomosed continuous network (Fig. 2A). Whereas gap 68 

junctions could readily be identified within comb plates (fig. S1) as previously reported (15), 69 

neither electrical nor chemical synapses were detected between the cells of the SNN. This 70 

observation was confirmed in smaller datasets of the nerve net beneath two comb rows and 71 

along the gut in two other cydippid individuals (fig. S2). Additionally, injection of the 72 

fluorescent lipophilic dye 1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate 73 

(DiI) into only one of the cells of 2-cell staged embryos led to fluorescent signal in only one 74 

half of the cydippid body, and the signal was seen in SNN cell bodies throughout the animal 75 

consistent with the syncytial nature of the SNN (fig. S3). 76 

Morphologically, neurites within the SNN exhibited no obvious polarity (axon vs. dendrite), 77 

showing similar diameter, dense core vesicles distribution throughout their length and the lack 78 

of the typical presynaptic triads (Fig. 2A-C). Moreover, SNN neurites often showed a blebbed 79 

or “pearls-on-a-string” morphology (Fig. 2D-G and fig. S4). The narrow segments were often 80 

just wide enough for microtubules to pass (Fig. 2G, fig. S4), and bulged segments often 81 

contained larger clear or electron dense vesicles and occasionally endoplasmic reticulum (Fig. 82 

2D and fig. S4). A recently developed antibody against the neuropeptide ML02736a(14) 83 

confirmed the presence of neuropeptides within some of the vesicles of SNN neurons (Fig. 2E, 84 

fig. S5). Although SNN neurons seemed to lack synapses between each other, we identified 85 

chemical synapses from the SNN to polster cells (fig. S6), suggesting directional signal 86 

transmission from the SNN to effector cells.  87 

Mesogleal neurons form direct contacts with the syncytial SNN 88 

We identified and reconstructed six mesogleal neurons exhibiting a star-like morphology with 89 

extensive plasma membrane protrusions of variable lengths (Fig. 3A). Their somata were filled 90 

with a variety of vesicles and larger vacuoles (Fig. 3B) and the protrusions of these cells did 91 
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not show the “pearls-on-a-strings” morphology present in neurites of the SNN. Some of the 92 

protrusions formed plasma membrane juxtapositions to neurites of the SNN (Fig. 3A, D, E). 93 

However, we did not find ultrastructural evidence for electrical or chemical synapses (Fig. 3E). 94 

In contrast to SNN neurons, we did not observe any electron dense vesicles in mesogleal 95 

neurons (Fig. 3B) but instead small electron-lucent vesicles of a similar size as synaptic vesicles 96 

(Fig. 3C) suggesting a different type of information transmission.  97 

Sensory cells form simple circuits involving the syncytial SNN   98 

We identified and reconstructed a total of 22 putative sensory cells from the present and an 99 

earlier data set(14) which fit into five morphological groupings (Fig. 4, fig. S7 and table S1). 100 

Some of them resembled known ctenophore sensory cell types (type 1, 4 and 5)(16, 17) whereas 101 

others exhibited a morphology that, at the best of our knowledge, has not been described 102 

previously (type 2 and 3) (Fig. 4, fig. S7, and table S1). We detected chemical synapses in 103 

several but not all putative sensory cells contacting neuronal or other effector cells (Fig. 4, fig. 104 

S7). Type 1 sensory cells exhibited a single long cilium and onion root basal body (Fig. 4, fig. 105 

S7A and B). Type 2 sensory cells exhibited a very short single cilium without an onion root 106 

basal body. Long neurites extending from their somata formed chemical synapses to polster 107 

cells (Fig. 4B, fig. S7A and C). 108 

Type 3 sensory cells exhibited multiple cilia without onion root basal bodies. Many large 109 

electron dense vesicles are localized beneath the cilia (Fig. 4C and fig. S7A and D). We found 110 

one of these cells near the tentacle with a synaptic connection to a mesogleal neuron (Fig. 4C). 111 

Type 4 sensory cells exhibited a single long filopodium. Some of them formed synapses to 112 

neurites of the SNN (Fig. 4A and D) and some also received synaptic input from type 1 sensory 113 

cells (Fig. 4A). Type 5 sensory cells exhibited multiple long filopodia. They formed plasma 114 

membrane contact to polster cells, but we did not detect synaptic contacts from or to this cell 115 

type. Finally, we used the 3D ultrastructural evidence to identify several discrete and simple 116 

neural circuits in early cydippid-phase M. leidyi. These circuits included synaptic signal 117 

transmission from sensory cells to other cell types including SNN neurons, mesogleal neurons, 118 

polster cells or even other sensory cell types (Fig. 4A-D). 119 

Discussion 120 

In the debate about the organization of animal nervous system at the end of the 19th century 121 

Joseph von Gerlach (1871)(18) and Camillo Golgi (1885)(19) put forward the “reticular theory” 122 

(also syncytial theory). Both proposed the cellular continuity of neurons. This view was 123 
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challenged by Ramón y Cajal (1888)(1) proposing an organization from discrete cellular units 124 

connected via synapses. Both contestant theories were founded on Golgi’s newly invented black 125 

staining that enabled scientists to study the detailed morphology of neurons and their 126 

neurites(20). Golgi and Cajal were honored with the Nobel Prize in Physiology or Medicine in 127 

1906 for their effort in elucidating the architecture of the nervous system(20). However, with 128 

the advent of electron microscopy in the 1950s and the discovery of the synaptic cleft, the 129 

reticular theory was put to rest in favor of Cajal’s hypothesis(21, 22). In the present study, 130 

volume electron microscopy revealed the 3D ultrastructural architecture of the SNN in an early 131 

cydippid-phase ctenophore providing evidence for its reticular – or syncytial – organization. 132 

Previous work suggested anastomosed nerve cords in adult ctenophores based on chemical 133 

staining(9) and multiple parallel strands of anti-tyrosylated-a-tubulin-stained neurites(10). Here 134 

we showed that a syncytial nerve net already exists in cydippid-phase M. leidyi. This syncytium 135 

may be reinforced in adult animals through the anastomosis of additionally formed neurites; 136 

however, confirmation of such connectivity will require further detailed high resolution 137 

analysis of the nerve net throughout development. 138 

Using high pressure freezing and freeze substitution techniques to preserve fine ultrastructural 139 

details with minimal fixation artifacts, we showed that the SNN forms a continuous structure. 140 

This is further supported by the unrestricted spread of DiI throughout the nerve net. 141 

Whereas gap junctions could be identified within the comb plates as previously reported(15) in 142 

our SBFSEM data as well as TEM micrographs, we found no evidence of similar structures 143 

between neurites of nerve net neurons that would suggest the presence of electrical synapses. 144 

Additionally, a recent characterization of the complete set of M. leidyi innexins - responsible 145 

for the formation of gap junctions in invertebrates - did not show any mRNA expression in situ 146 

hybridization experiments in nerve net cell bodies(23) . We did however observe synaptic triads 147 

and plasma membrane contacts of unknown molecular structure that connect the SNN 148 

externally to polster and mesogleal neurons. 149 

Previous characterizations of ctenophore nerve nets have been predominantly based on 150 

traditional histochemical staining techniques(9, 24), and more recently on fluorescence 151 

microscopy of antibody staining against alpha-tubulin(10, 12, 13, 25). Although both 152 

techniques provide valuable insight into the general organization and location of ctenophore 153 

neurons, they do not allow investigating the ultrastructure and nature of neuronal connections. 154 

Data from transmission electron microscopic serial sections(26, 27) may also have overlooked 155 

this special syncytial architecture due to the difficulty to produce continuous section series over 156 

such a large volume. Besides reports on single self-anastomosing neurites in other animals(28–157 
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30), the presence of a complete syncytial nerve net has only been reported for cnidarian, 158 

medusae-like colonial polyp Velella(31, 32). However, at the best of our knowledge, the 159 

syncytial organization of this nerve net has not yet been verified on an ultrastructural level. At 160 

this point in time, we found this feature only in the ctenophore M. leidyi nerve net but further 161 

analysis across nerve net-bearing animals may provide exciting insights into early nervous 162 

system evolution and modes of neuronal connectivity. 163 

Although neurite fusion and pruning seem to be a common principle during the early neural 164 

development in many animals(33, 34) we do not consider the syncytial cydippid SNN to be 165 

completely remodeled by such a process later in development. It was suggested that the early 166 

cydippid-phase is not a larval but rather autonomous life history phase of M. leidyi and other 167 

ctenophores(6). Indeed, cydippid-phase M. leidyi are free-swimming pelagic predators, able to 168 

reproduce and exhibit complex behaviors as described for their second, reproductive, lobate-169 

phase(35–37).  170 

Our identification of the non-synaptic architecture of the cydippid-phase SNN raises the 171 

intriguing question about the mechanism of signal propagation. Genome and single cell 172 

transcriptome analyses revealed that M. leidyi SNN neurons express a voltage gated calcium 173 

(Cav), 35 potassium (Kv) and two non-specific sodium (Nav) channels(14, 38, 39). These 174 

numbers are similar to neurons of other animals and ctenophore SNN neurons are therefore 175 

potentially able to produce membrane potential or even action potentials(40). Moreover, the 176 

presence of numerous peptidergic vesicles in the SNN suggests that signal transmission also 177 

occurs through neuropeptide release, and the Cav channel expressed in these cells might be 178 

involved in exocytosis(14, 41). Therefore, we can speculate that the SNN could function as a 179 

neuroendocrine system that is able to release transmitters into the mesoglea via vesicle fusion 180 

with the plasma membrane at different neurite sites. Such a system would require only a 181 

minimum number of chemical synapses and, if acting at short distances, may reach enough 182 

effector cells. Indeed, studies on the conduction velocity in ctenophores have shown a slower 183 

speed of signal propagation compared to nerve nets and conducting epithelia of other 184 

animals(42), indicating that signal propagation could be non-synaptic.  185 

Additionally, our ultrastructural identification of simple circuits now provides a basis that 186 

allows a better understanding of how mechanoreception, swimming and prey capture behavior 187 

in young cydippid-phase ctenophores could be facilitated. Numerous sensory neurons are 188 

connected through chemical synapses to the nerve net which in turn forms chemical synapses 189 

onto effector cells like the comb rows or ciliated groove cells(14). Type 1 ciliated sensory cells 190 

and type 4 filopodiated sensory cells, previously described as ‘Tastborsten’ and ‘Taststifte’(9), 191 
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have been postulated to be sensitive to water vibrations and touch(17, 43, 44). Their abundance 192 

throughout the epidermis and direct cell-cell contact to the nerve net (many through chemical 193 

synapses) highlights the importance of localized vibration and touch information to be 194 

transmitted directly to the SNN. Morphological analysis allows us to speculate that a type 2 195 

sensory cell, which wraps around polster cells, may be able to detect water flow and thus alter 196 

comb beat frequency whereas a type 3 sensory cell, whose multiple cilia are in close contact to 197 

the tentacle, may be triggered by food capture. Functional experiments are needed to fully 198 

understand the activity of these circuits and unravel the different modes of signal transmission 199 

utilized by the different ctenophore neuronal cell types. This study is limited to the analysis of 200 

an early developmental stage where fixation of whole animals with high pressure freezing is 201 

still possible. Comparison to other ctenophore species and investigation of later life history 202 

stages of M. leidyi is needed to clarify if a syncytial SNN is a feature restricted to an early 203 

ontogenetic phase in only a few species or if it is a common feature of all ctenophores. This 204 

approach will also provide valuable insights into the development of the syncytial SNN: do 205 

neurons divide, but remain connected in the cydippid SNN or do neurites from different cell 206 

bodies reach out and fuse?  207 

Whether neurons of animals have a single origin or possibly originated more than once during 208 

evolution is a debated topic. The existing data on the ctenophore nervous system show a unique 209 

mosaic of cellular and syncytial components with distinct evolutionary histories. It will be a 210 

major future challenge to clearly identify the novel parts of the mosaic that may have evolved 211 

independently and the pre-existing parts that where strongly modified, possibly even beyond 212 

recognition. Our study highlights that the resemblance between the nerve net of ctenophores 213 

and the nerve nets of cnidarians and bilaterians might only be superficial, as it appears that their 214 

connectivity is fundamental different. Our ultrastructural analysis of the ctenophore SNN not 215 

only puts ctenophores at the center of nervous system evolution, but also provides a unique 216 

opportunity to explore the boundaries of nervous system organization and function.  217 
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Figure legends: 378 

Figure 1. Ctenophores and their nervous system. (A) Ctenophores as one of the earliest 379 

branching extant lineages of the animal kingdom. (B) The ctenophore Mnemiopsis leidyi 380 

exhibits complex life cycle stages including a predatory cydippid phase that hatches from the 381 

egg and can reproduce after a few days. (C) 3D reconstruction of the nerve net, comb rows, 382 

sensory cells, mesogleal neurons and a tentacle from SBFSEM data of a 1-day old cydippid. 383 

Inset: Phase contrast image of a 1-day old cydippid. White box: area reconstructed in C. Scale 384 

bar: 100 µm. 385 

Figure 2. Connectivity and ultrastructure of the ctenophore SNN. (A) 3D reconstruction of 386 

five SNN neurons. White asterisks indicate examples of continues membrane between cell 387 

bodies of neuron 1 and 2. (B) 3D reconstruction of the SNN neuron cell bodies showing the 388 

nucleus (blue) and dense core vesicles (orange). (C) TEM cross section of an SNN neuron cell 389 

body showing ultrastructural details including large dense core vesicles (white arrowhead). (D) 390 

TEM cross section of a SNN neurite with dense core and clear core vesicles localized in 391 

“blebbed” areas (white and orange arrowheads). (E) Antibody staining against neuropeptide 392 

ML02736a (green) in SNN neurites (magenta) stained with anti-tubulin. (F) TEM 3D 393 

reconstruction of SNN neurite (violet) and dense core vesicles (orange) highlighting the blebbed 394 

morphology. (G) TEM cross section of SNN neurites showing continuous microtubules (orange 395 

arrows) passing through narrow segments. Scale bars C: 1 µm; D, G: 500 nm. 396 

Figure 3. Close association of mesogleal neurons and the SNN. (A) 3D reconstruction of 397 

SNN (violet) and mesogleal neurons (yellow) from SBFSEM data. (B) TEM cross section of a 398 

mesogleal neuron cell body. Different types of clear vesicles and vacuoles but no dense core 399 

vesicles are present. (C) 3D reconstructed mesogleal neuron with three long neurites that 400 

contain small clear vesicles (blue arrowheads). TEM cross section of mesogleal neurites with 401 

small clear vesicles shown in inset. (D) 3D reconstruction of mesogleal neuron with contact site 402 

(white box) to SNN. (E) Corresponding SBFSEM image of contact site between mesogleal 403 

neuron and SNN neuron. mn: mesogleal neuron. No chemical or electric synapse structures 404 

could be observed. Scale bars B: 1 µm; C (inset): 200 nm; E: 500 nm. 405 

Figure 4. 3D reconstruction of sensory cells allows for the identification of simple circuits. 406 

Top panel: Localization of each circuit (pink square). Middle panel: 3D reconstructions of 407 

sensory and effector cells. Mitochondria are shown in yellow as representative of synaptic 408 

tripartite complexes in all circuits. Bottom panel: Proposed wiring diagram. (A) Circuit between 409 
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type 1 and type 4 sensory cell and SNN. (B) Multiple synaptic connections between type 2 410 

sensory cell with short cilium and comb cells. (C) Synaptic connection between type 3 sensory 411 

cell near tentacle and a mesogleal neuron. (D) Type 4 sensory cell with single filopodium 412 

synapses onto nerve net.  413 
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